Hollow lipid nanoparticles filled with engineered siRNA effectively shrink melonomic tumors.
“It is a very selective and targeted approach,” said Gavin Robertson, Ph.D., who led the team of researchers from the Penn State College of Medicine. “And unlike most other cancer drugs that inadvertently affect a bunch of proteins, we are able to knock out single genes.”
The Penn State researchers speculated that siRNA could turn off the two cancer-causing genes and potentially treat the deadly disease more effectively. “siRNA checks the expression of the two genes, which then lowers the abnormal levels of the cancer causing proteins in cells,” explained Dr. Robertson. This research appears in the journal Cancer Research.
In recent years, researchers have zeroed in on two key genes—B-Raf and Akt3—that play key roles in the development of melanoma. Mutations in the B-Raf gene, the most frequently mutated gene in melanoma, lead to the production of a mutant form of the B-Raf protein, which then helps mole cells survive and grow. B-Raf mutations alone, however, do not trigger melanoma development. That event requires a second protein, called Akt3, that regulates the activity of the mutated B-Raf, which aids the development of melanoma. The siRNA agents used in this study specifically target Akt3 and the mutant B-Raf and therefore do not affect normal cells.
http://www.physorg.com/news144437051.html
“It is a very selective and targeted approach,” said Gavin Robertson, Ph.D., who led the team of researchers from the Penn State College of Medicine. “And unlike most other cancer drugs that inadvertently affect a bunch of proteins, we are able to knock out single genes.”
The Penn State researchers speculated that siRNA could turn off the two cancer-causing genes and potentially treat the deadly disease more effectively. “siRNA checks the expression of the two genes, which then lowers the abnormal levels of the cancer causing proteins in cells,” explained Dr. Robertson. This research appears in the journal Cancer Research.
In recent years, researchers have zeroed in on two key genes—B-Raf and Akt3—that play key roles in the development of melanoma. Mutations in the B-Raf gene, the most frequently mutated gene in melanoma, lead to the production of a mutant form of the B-Raf protein, which then helps mole cells survive and grow. B-Raf mutations alone, however, do not trigger melanoma development. That event requires a second protein, called Akt3, that regulates the activity of the mutated B-Raf, which aids the development of melanoma. The siRNA agents used in this study specifically target Akt3 and the mutant B-Raf and therefore do not affect normal cells.
http://www.physorg.com/news144437051.html
0 Comments:
Post a Comment
<< Home