Technology has immortality, cures for the worlds devastating diseases, quantum computing and a host of other science fiction notions in its grasp. Current trends in a number of areas indicate that over the next 10 years many of these technologies will come to fruition. "The Next 10 Years" tracks the trends that will transform our everyday lives in almost unimaginable ways.

Wednesday, May 23, 2007

Nanoparticles Delivery of 'Suicide DNA' Kills Prostate Tumors

Nanoparticles Delivery of 'Suicide DNA' Kills Prostate Tumors

Using nanoparticles developed by members of the Alliance for Nanotechnology in Cancer, a team of investigators at the Lankenau Institute for Medical Research, in Philadelphia, has developed a DNA-based therapeutic agent that has the potential to treat both enlarged prostates and localized prostate tumors. When tested in mice, this new agent specifically targeted prostate tissue, producing no toxic effects in surrounding tissues.

Writing in the journal The Prostate, a team of investigators led by Janet Sawicki, Ph.D., described its use of polymer nanoparticles to delivery a so-called suicide gene that codes for the production of diphtheria toxin. The biodegradable and biocompatible polymer nanoparticles were developed by Robert Langer, Ph.D., and his colleagues at the MIT-Harvard Center of Cancer Nanotechnology Excellence.

To make their suicide gene specific for prostate tissue, the investigators linked it to a gene regulator that responds only in the presence of a prostate-specific protein. Without this protein, the diphtheria toxin gene remains inactive, which makes it non-toxic to any cells but those in the prostate.

When injected directly into the prostate, this nanoparticle-encapsulated gene construct triggered a significant reduction in the size of the prostate gland and on the size of prostate tumors. The investigators showed that this shrinkage resulted from cells undergoing apoptosis, or programmed cell death. In fact, the researchers found that a single injection of nanoparticles triggered apoptosis in 80 percent of tumor cells present in the tissue. In contrast, direct injection of the gene construct alone, that is, without the nanoparticle delivery vehicle, produced no effect on prostate tissue or tumors.


0 Comments:

Post a Comment

<< Home